Keyword Query Suggestion Based on Document Proximity

نویسندگان

  • M. Padmaja
  • T. Rajendra
چکیده

In this paper, we design a location-aware keyword query suggestion framework. We propose a weighted keyword-document graph, which captures both the semantic relevance between keyword queries and the spatial distance between the resulting documents and the user location. The graph is browsed in a randomwalk-with-restart fashion, to select the keyword queries with the highest scores as suggestions. To make our framework scalable, we propose a partitionbased approach that outperforms the baseline algorithm by up to an order of magnitude. The appropriateness of our framework and the performance of the algorithms are evaluated using real data. Keyword suggestion in web search helps users to access relevant information without having to know how to precisely express their queries. Existing keyword suggestion techniques do not consider the locations of the users and the query results; i.e., the spatial proximity of a user to the retrieved results is not taken as a factor in the recommendation. However, the relevance of search results in many applications (e.g., location-based services) is known to be correlated with their spatial proximity to the query issuer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Location Aware Keyword Query Suggestion Based on Document Proximity (Extended Abstract)

Consider a user who has issued a keyword query to a search engine. We study the effective suggestion of alternative keyword queries to the user, which are semantically relevant to the original query and they have as results documents that correspond to objects near the user’s location. For this purpose, we propose a weighted keyword-document graph which captures semantic and proximity relevance...

متن کامل

Document Image Retrieval Based on Keyword Spotting Using Relevance Feedback

Keyword Spotting is a well-known method in document image retrieval. In this method, Search in document images is based on query word image. In this Paper, an approach for document image retrieval based on keyword spotting has been proposed. In proposed method, a framework using relevance feedback is presented. Relevance feedback, an interactive and efficient method is used in this paper to imp...

متن کامل

Heading-Aware Proximity Measure and Its Applica- tion to Web Search

Proximity of query keyword occurrences is one important evidence which is useful for effective querybiased document scoring. If a query keyword occurs close to another in a document, it suggests high relevance of the document to the query. The simplest way to measure proximity between keyword occurrences is to use distance between them, i.e., difference of their positions. However, most web pag...

متن کامل

Topic Based Query Suggestion Using Hidden Topic Model for Effective Web Search

Keyword-based web search is widely used for locating information on the web. But, web users lack sufficient domain knowledge and find it difficult to organize and formulate input queries which affect search performance. Existing method suggests terms using the statistics in the documents, query logs and external dictionaries. This novel query suggestion method suggests terms related to topics p...

متن کامل

Query Architecture Expansion in Web Using Fuzzy Multi Domain Ontology

Due to the increasing web, there are many challenges to establish a general framework for data mining and retrieving structured data from the Web. Creating an ontology is a step towards solving this problem. The ontology raises the main entity and the concept of any data in data mining. In this paper, we tried to propose a method for applying the "meaning" of the search system, But the problem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016